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Abstract—In this paper the dynamic-range optimization of a 
new class of low-pass active-RC filters, based on the leap-frog 
topology is presented, using the MATLAB Optimization 
Toolbox. The new structure is a simplified leap-frog structure 
with a reduced number of components, reduced complexity, and 
permitting a straightforward design procedure. It is most 
suitable for the nonbalanced-to-ground version of low-sensitivity 
filters. As an illustration of the efficiency of the proposed new 
leap-frog filter, a sensitivity analysis using Monte Carlo runs 
was performed on examples with Butterworth and Chebyshev 
0.5dB pass-band ripple low-pass filters. A comparison with 
other common filters such as standard leap-frog filters and 
single-amplifier Biquads demonstrates the sensitivity 
improvement obtained with the new filters. In this paper we 
present a numerical method of optimizing these new filters for 
improved dynamic range. 

I. INTRODUCTION 
Since the most critical disadvantage of active-RC filters is their 

high sensitivity to component tolerances, new proposals of low-
sensitivity circuits are generally welcome. A new topology for an 
active-RC leap-frog filter was published recently [1][2]. Compared to 
standard leap-frog filters it has a lower complexity and a lower 
number of components, while keeping a low sensitivity to component 
tolerances (see also [3]). 

In this paper we present a method of optimizing the dynamic 
range of the new leap-frog filters (NLF). Unlike the case with 
standard leap-frog filters (LF), which can use signal-flow-graph 
methods (SFG) for dynamic range optimization [4] it can be shown 
that in the case of the NLF this is not possible. In this paper, we show 
that a dynamic range optimization of the NLF can be achieved using 
a numerical optimization in conjunction with MATLAB [5]. The 
optimization method is illustrated with a third- and fourth-order 
Butterworth and Chebyshev 0.5dB filter. The sensitivity of the 
dynamic-range-optimized NLF filters is compared with two common 
filter circuits, a standard leap frog (LF) and a single-amplifier Biquad 
(SAB) by Monte-Carlo analysis, using the Cadence PSpice 16 
program [6]. 

II. NEW LEAP-FROG FILTERS 
Consider the NLF low-pass (LP) filters with a reduced number of 

amplifiers (in the nonbalanced-to-ground mode) shown in Figs. 1–4. 
The reduced number of amplifiers refers to the fact that, compared to 
the standard LF filter, the NLF equivalent requires no inverter 
amplifiers. (In a fully balanced-to-ground realization this advantage 

disappears because there is no need for an inverter since signals from 
negative outputs of differential-input-differential-output opamps are 
generally available.) 

A. Third-Order Filters 
As will be demonstrated below, in order to adjust the voltages V1 

to V3 for maximum dynamic range at the amplifier outputs, additional 
resistive dividers in the feedback loops of the filter in Fig. 1 
(originally introduced in [1]) are included as shown in Fig. 2. The 
attenuation factors thereby obtained are denoted by �1=R0/(R0+R01), 
�2=R0/(R0+R02), and the ratio �=R3/R4. In Section 3, �1, �2 and � will 
be used for the optimization process.  

The voltage transfer function of a third-order allpole LP filter, in 
terms of the polynomial coefficients ai (i=0, 1, 2), is given by 
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where, in the case of the filter in Fig. 2, the coefficients are given by 
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Figure 1.  New third-order LP leap-frog filter (NLF). 

 
Figure 2.  Third-order LP filter for dynamic range optimization (NLFO). 
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and the parameters �i are reciprocals of the RC-products, defined 
by: 
 1)( �� iii CR�  (i=1, 2, 3).  (3) 

Obviously, if �=0, the resistance R4 becomes infinite. Thus, from 
(2), a0=0, which means that the real pole of the transfer function is 
actually a pole at the origin. Consequently, for an odd-order filter, in 
order to realize a negative real pole, � must always be non-zero and 
R4��������	
�
��
�����i (i=1, 2, 3) can be obtained by solving the 
following equations [which follow from (2)]:  
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Finally, selecting suitable values (depending on the technology 
used) for C1, C2 and C3, and with the obtained values of �i, the 
resistors Ri (i=1, 2, 3) readily follow from (3):  

 1)( �� iii CR �  (i=1, 2, 3). (5) 
Note that, when �1=�2=1, the filter circuit in Fig. 2 simplifies to that 
of Fig. 1, and the design equations (4) have a simpler form and can 
be used to design the filter in Fig. 1. 
B. Fourth-Order Filters 

As an example of an even-order NLF filter, consider the two 
fourth-order filters shown in Figs. 3 and 4. Note that the (simpler) 
filter in Fig. 3 does not need R5 (i.e. �=0) because the coefficient a0 
[see (7) below] does not contain the factor �. This holds for all even-
order NLF filters. As in the previous (third-order) case, the filter in 
Fig. 4, which is a modified version of the filter in Fig. 3, requires 
additional feedback resistors and an additional resistor R5 for 
dynamic range optimization. This is because, in the optimization 
process for the fourth-order filter, we need four free design 
parameters, i.e. �1, �2, �3 and �. 

The fourth-order LP voltage transfer function, in terms of the 
polynomial coefficients ai (i=0, 1, 2, 3), is given by 
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where, in the case of the filter in Fig. 4, the coefficients are given by 
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It can be shown that the parameters �i (i=1, 2, 3, 4) can be 
calculated only by solving the equations in (7) numerically, e.g. by 
using MATLAB. To start, we select values for �1, �2, �3, � and then 
calculate parameters �i (i=1, 2, 3, 4). We do this by equating the 
expressions on the right hand side in (7) with the coefficients ai (i=1, 
2, 3, 4) which are given in Table I.  

As an illustration of the design process for dynamic range 
optimization, consider the following two examples of a third- and 
fourth-order LP filter transfer function with the cut-off frequency of 
1kHz: (i) Butterworth and (ii) Chebyshev with the pass-band ripple 
Amax=0.5dB. The coefficients ai (i=1, 2, 3, 4) are given in Table I. 
Note that a Butterworth filter, which corresponds to the limit case of 
a zero-ripple Chebyshev filter of equal order, always has lower pole 
Qs than the latter. 

 
Figure 3.  New fourth-order LP leap-frog filter (NLF). 

 
Figure 4.  Fourth-order LP filter for dynamic range optimization (NLFO). 

TABLE I.  THIRD- AND FOURTH-ORDER BUTT. AND CHEBY. 
TRANSFER-FUNCTION COEFFICIENTS WITH 1KHZ CUT-OFF FREQUENCY. 

COEFFICIENT 
Butterworth Chebyshev 0.5dB 

Third-order Fourth-order Third-order Fourth-order 

a0 2.4805�1011 1.55855�1015 1.7753�1011 5.90768�1015 

a1 7.8957�107 6.48186�1011 6.0595�107 2.54364�1011 

a2 1.2566�104 1.34788�108 7.8723�103 6.77792�107 

a3  16418.8  7523.4 

III. DYNAMIC-RANGE OPTIMIZATION 
A. Third-Order NLF Filter Optimization 

For the filter in Fig. 2, the voltage transfer function from the filter 
input to every opamp output is defined by: 
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Note that all the transfer functions in (8) have the same denominator 
D(s)=s3+a2s2+a1s+a0, with coefficients ai (i=1, 2, 3) from Table I.  

The amplitude-frequency characteristics of the transfer functions 
in (8), i.e. Ai(�)[dB]=20log
Hi(j�)
 (i=1, 2, 3), were simulated using 
Cadence Pspice 16 for the circuit in Fig. 1, and �=�1=�2=1. In all 
simulations we use a voltage-controlled voltage source (VCVS) E 
with a high gain of 106 to represent an ideal opamp. They are shown 
in Figs. 5(a)–(b) for the Butterworth and Chebyshev examples, 
respectively.  

The design values and components of the non-optimized filter in 
Fig. 1 readily follow from (4); they are the same as the examples in 
[1], denormalized to 1kHz. As can be seen in Fig. 5(a) and (b) the 
magnitude of inner opamp outputs have maximum values other than 
0dB (all maxima are shown). The maximum of A3(�) is at 0dB.  

One often-used criterion that is useful to guarantee maximum 
dynamic range is: for a given input signal equal to 1V, the largest 
signal anywhere within the circuit (i.e. at every opamp output) should 
be equal to 1V. In other words, the maximum gain anywhere within 
the circuit should be equal to 0dB (see [4] Section 6). 

As pointed out earlier, simple signal-level scaling by scaling the 
corresponding nodes in the equivalent SFG (e.g. [7]) is not possible 
for the NLF filter. One reason for this is that using the SFG method, 
the factor by which each node is to be scaled must be known in 
advance. In our case the scaling factor is calculated only at the end of 
the optimization process. 

265



 
Figure 5.  PSpice magnitude response of the new leap-frog third-order LP filters at the opamps' outputs. (a)-(b): non-optimized. (c)-(d): optimized. 

Thus, it turns out that the only way to optimize the dynamic 
range of the NLF filter is to determine the free design parameters �, 
�1, and �2 for equal maxima of Ai(�)[dB]; and this can be 
accomplished only by using a method of numerical optimization. In 
doing so, we define a quantity �, which represents the sum of the 
squares of the distances between the magnitude maxima and the 
arithmetical mean of those maxima defined by z, which is (in our 
three-amplifier case) given by:  

 �
�

�
3

1
max)(

3
1

i
i jHz � . (10) 

Thus, the error of the desired equal-maxima will be given by: 
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The error � is used as a 'goal' (or 'cost') function in the 
optimization process. The optimum design parameters �, �1, and �2 
are determined by searching the minimum of the equal- maxima error 
in (11), i.e.  
 �

x
x minarg�opt , (12) 

where:  
 � �T21 ����x . (13) 

To find �Hi(j�)�max (i=1, 2, 3) in (10) and (11), we first have to 
find the frequencies at which the signal maxima occur. This can be 
done using first derivatives, i.e.  

 )3,2,1(0
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Derivations can be calculated inside the main MATLAB .m file 
written for optimization, using the 'Symbolic Math Toolbox' in 
MATLAB [8]. To search for the minimum in (12) numerically, a 
'Quasi-Newton line search' method was used, performing the 
unconstrained minimization of the goal function (11) [5]. For this 
task we used the function fminunc of the 'Otimization Toolbox' in 
MATLAB [9]. Starting from the vector xstart=[0.9 0.3 0.6]T, we 
obtain the solution 

xopt=[0.87223441  0.28818426  0.57509193]T, 
and starting from xstart=[0.5 0.3 0.3]T we obtain 

xopt=[0.59086092  0.31040132  0.23091202]T, 
for the Butterworth and Chebyshev filter, respectively. After 12 
iterations the precision of � �10–13 was achieved, which is more than 
sufficient for our optimization problem. 

All three maxima converged to z, which represents the d.c. gain 
of the final filter circuit: A0Butt=11.9939dB for the Butterworth and 
A0Cheby=14.7318dB for the Chebyshev filter, respectively. To realize 
the maximum 0dB of the overall transfer function magnitude, the 
input resistor R1 is split into two resistors R11 and R12 (see Fig. 2). The 
design values of the optimized filters are �1=20221, �2=6628.1, 
�3=7362.7 (rad/s) for the Butterworth, and �1=21301, �2=6317.2, 
�3=7193.5 (rad/s) for the Chebyshev filter, respectively. A simple 
check for the accuracy of the calculated results is to include all 
obtained values (�s, �s and �s) in (2), and to compare the results 

with the coefficients that we started out with in Table I. The 
corresponding optimized magnitudes of the three opamp outputs are 
shown in Fig. 5 (c)–(d).  

Depending on the selection of the starting point xstart the 
procedure will lead to an acceptable global minimum, i.e. for which 
all �s and �s are positive, and the �s are less than or equal to unity. 
Choosing another starting vector xstart will either give different values 
of maxima, or no global minimum, at all.  

B. Fourth-Order NLF Filter Optimization 
As with the third-order NLF filter, here we proceed with the 

design of the optimum fourth-order NLF filter shown in Fig. 4. 
Again, we have to apply numerical calculations of the filter 
components, symbolic calculations to find the maxima of the 
amplitude response, and a numerical optimization to find the 
optimum parameters �1, �2, �3 and �. Starting from vector xstart= 
[1 0.3 0.3 0.8]T we obtain the solution 

xopt=[0.85001732  0.40126466  0.28161741  0.69535836]T, 
and from xstart=[0.4 0.2 0.2 0.4]T we obtain 

xopt=[0.46553270  0.21256312  0.10217718  0.36567503]T, 
for the Butterworth and Chebyshev filter, respectively.  

The corresponding parameters are �1=15911.5, �2=6159.32, 
�3=7429.69, �4=7671.21 (rad/s) and A0Butt=11.0872dB for the 
Butterworth, and �1=30299.8, �2=6189.65, �3= 6023.54, �4= 
6727.84 (rad/s), and A0Cheby=22.6883dB for the Chebyshev filter, 
respectively. The magnitude at the amplifier outputs of the optimized 
filter are shown in Fig. 6(c)–(d). The non-optimized filter, with the 
magnitudes in Fig. 6(a)–(b), were calculated starting from �=0 and 
�1=�2=�3=1. They were realized using the filter circuit in Fig. 3.  

The proposed optimization method is universal in that it can be 
applied to other filter structures, e.g. filter cascade, follow-the-leader 
feedback, etc., as well as to other filter types, e.g. high- and band-pass 
filters. In doing so, the same steps as presented here have to be 
applied: (i) find maximum of amplitude response at the amplifier 
outputs; (ii) decide which elements have to be tuned to adjust those 
maxima; (iii) perform numerical optimization until all maxima are 
equal. 

IV. SENSITIVITY ANALYSIS 
In what follows we compare the sensitivity of our fourth-order 

NLF filter to the sensitivity of two conventional filter circuits: (i) the 
standard leap frog (LF) in Fig. 7 and (ii) the single-amplifier Biquad 
(SAB) in Fig. 8. These were designed using the standard methods 
presented in [4] and [10], respectively. The values for the LF filter 
components follow from the filter tables in [11]. The SAB filter was 
designed using the impedance tapering method (see [12]) and 
therefore already has reduced sensitivity. All the filters are 
denormalized to the cut-off frequency of 1kHz.  

Using PSpice with Monte Carlo runs [6] (with zero-mean 
Gaussian distribution and 1% standard deviation of all passive 
components), the responses shown in Fig. 9 were obtained. For the 
comparison, all ordinate scales were selected to be the same. The new 
leap-frog filter shows very low sensitivity, as does the standard LF 
filter. The SAB filter has a larger sensitivity than either of the leap- 
frog filters.  

266



 
Figure 6.  PSpice magnitude response of the new leap-frog fourth-order LP filter at the opamps' outputs. (a)-(b): non-optimized. (c)-(d): optimized. 

 
 

Figure 7.  Fourth-order standard leap frog filter (LF). Figure 8.  Fourth-order SAB filter. 

 

 
Figure 9.  Monte Carlo runs of fourth-order filter examples: new leap frog (NLF); new leap frog optimized (NLFO); leap frog (LF); single-amplifier Biquad 

(SAB). (a)–(d): Butterworth; (e)–(h): Chebyshev 0.5dB. 

The sensitivity of the third-order NLF, LF and SAB circuits are 
compared in [1], and lead to the same conclusions.  

V. CONCLUSIONS 
This paper presents the dynamic-range optimization of the new 

leap-frog (NLF) topology used for the design of the allpole LP filters 
recently published in [1][2]. We demonstrate that the new leap-frog 
filter can be efficiently optimized for maximum dynamic range by 
using numerical optimization methods. More conventional methods, 
such as signal-flow-graph node scaling, are not possible for these 
filters. Optimizing the dynamic range of a filter is an important factor 
in improving the performance of a filter. The new filter has a 
canonical number of components. The presented topology is also 
shown to have low sensitivity to component tolerances—in some 
cases even lower than that of the standard leap-frog circuit. This is 
verified by MC sensitivity analysis. The new leap-frog topology can 
be generalized to realize nth-order filters – as is the case for the 
standard leap-frog filter. Higher-order filters can be optimized for 
maximum dynamic range using the same methods as presented in this 
paper for the case of third- and fourth-order filters.  
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