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Abstract— In this paper we compare two versions of fourth-
order band-pass (BP) filter section realized as coupled 
structure, having negative feedback around two Biquadratic 
sections in cascade, usually designated as Biquartic section 
(i.e. it is the fourth-order band-pass section). The frequency 
response of a filter is subject to vary from the nominal 
values due to the effects of aging, changing working 
conditions, the fabrication tolerances of passive and active 
elements, etc. In order to maintain the filter’s characteristics 
inside given specifications at the time of manufacture, and 
as long as possible, the main requirement is to design filters 
with reduced sensitivity to component tolerances. The 
Biquartic section has significantly reduced sensitivities to 
the changes of passive element values, particularly within 
the pass band, in comparison to common cascade design. 
For that purpose this structure is very suitable for use as a 
building block of narrow band, high order BP filters. The 
sensitivities are further reduced by using three-amplifier 
biquadratic block instead of more sensitive single-amplifier 
block. We investigated the sensitivities of two versions of 
biquartic section with two extreme combinations of second-
order sections q-factor values, using Schoeffler’s measure, 
the dynamic range, and output thermal noise using analysis 
in PSpice. Biquartic sections used throughout the examples 
are realized as reduced amplifier version retaining the low 
sensitivities of biquartic design. They also possess simple 
tuning features and simple design; design equations are 
given. 
Keywords: Band-pass filters, Low-sensitivity filters, Low-noise 
filters, Biquartic section, Cascade realization, Schoeffler’s 
sensitivity. 

I. INTRODUCTION 
Often in practice band–pass (BP) filters of high-order 

and narrow pass-band are difficult to be realized. They 
possess very high pole-Q factors, and therefore have very 
high sensitivity to component tolerances. This problem is 
becoming more pronounced if such band-pass filters are 
realized in integrated-circuit form, because on-chip 
component tolerances are much larger than those in 
discrete form. One of the efficient solutions of this 
problem is reducing the sensitivity using negative 
feedback: a coupled structure [1], [2]. 

In this paper we present the reduced-amplifier design 
of the coupled fourth-order BP filter with low sensitivity 
which is referred to as Biquart. We analyse the sensitivity 
of the obtained filter using Schoeffler’s measure, on 
various examples and different designs. In the design we 
also wish to have the possibility of easy tuning the center 
frequency and the pass-band width without deteriorating 
the amplitude-frequency characteristics. It is also desirable 
that the new structure provides lower signal distortion and 
output thermal noise, as well. 

II. HIGH-ORDER BP FILTERS DESIGN 
To design high-order (2Nth–order) geometrically 

symmetrical BP filters we start from Nth-order low-pass 
(LP) prototype filter with the transfer function: 
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where η=1 if the filter order N is odd, η=0 for N even, γ is 
the frequency of the negative real pole for N odd, ωLPi and 
qLPi are parameters of the (N–η)/2 complex-conjugate pole 
pairs, and the kLPi are pass-band gains. If (1) is realized in 
the cascade form we take care of the sequence of realizing 
the individual Q-factors such that QLPi<QLPi+1<QLPi+2<… . 
Using common LP−BP transformation: 
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where ω0 is the desired center frequency, and B is the 
desired pass-band width of the band-pass filter, we realize 
the BP transfer function of the general form given by: 
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where we realize (N–η)/2 BP fourth-order sections in 
cascade, and one second-order section if the LP prototype 
filter was odd. The transfer function of second-order 
section has the form given by (4) (without index i).  

Each TBQi(s) in (3) is fourth order transfer function and 
we will continue to call it Biquartic transfer function, 
while the network which implements such a function is 
called Biquartic section or “Biquart” (hereafter BQ). Tb0(s) 
is second order transfer function and is referred to as 
Biquadratic section or “Biquad”. The BP filter of higher 
order having the transfer function defined by (3) is 
referred to as “Cascade of Biquarts” (hereafter CBQ). 

III. BIQUARTIC SECTION 
Biquartic section, which realizes each fourth-order BP 

transfer function TBQi(s) in (3) is the main subject of this 
paper. It will be realized by cascading two BP Biquadratic 
sections (of second-order) applying a negative feedback, 
as shown in Fig. 1 (see [1], [2]). 

Gain β represents the feedback coefficient (β>0), A is 
an input gain, and Tb1(s), Tb2(s), are the second-order BP  
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Figure 1.  Biquartic BP section. 

 
Figure 2.  Complete procedure of the calculation of the fourth-order BP 
Biquartic section starting from second-order LP prototype via cascade. 

Biquadratic sections with voltage transfer functions given 
by: 
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Voltage transfer function of the Biquartic section in 
Fig. 1 is given by: 
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The complete procedure in designing of one BP 
fourth-order BQ section in CBQ, from the second-order 
LP prototype filter over the cascaded fourth-order BP 
filter is shown in Fig. 2. The realization starting from the 
1st-order LP producing the 2nd-order BP filters if the filter 
prototype order N was odd is well-known. 

A. Determination of the coefficients of the cascade 
In the first step in Fig. 2 it is shown the common 

LP−BP transformation applied on the second-order LP 
prototype filter and the obtained fourth-order BP filter in 
the cascade structure. The transfer function of a second-
order LP prototype is given by (1) for N=2. Combining (2) 
and (1) we obtain TBP(s)=N(s)/D(s) in the form: 
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Transfer function of the fourth-order BP cascade in 
Fig. 2 has the form: 
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where Tc1(s) and Tc2(s) are the second-order Biquadratic 
sections with BP voltage transfer functions given by: 
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We substitute (8) into (7) and rewrite it in the form: 
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If we equate the coefficients multiplying the 
potentions of complex variable “s” in the denominator of 
(9) and (6) we obtain the system of equations: 
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Combining (10) and (12) we obtain the condition for 
determining solutions: 

 .0))(( 1212 =−− cccc QQωω  (14) 
Two solutions are possible depending on the poles of 

the LP prototype:  

1. ωc1=ωc2=ω0 for real poles of the LP prototype. 

2. Qc1=Qc2=Qc for conjugate-complex poles of the 
LP prototype. 

In what follows we choose conjugate-complex poles 
of the LP prototype (case 2) and the system of equations 
(10)–(13) is simplifying into the system: 

 
LP

LP

c

cc

Q
B

Q
ωωω

=
+ 21  (15) 

 222
02

2
02

2
2
1 2 LP

c
cc B

Q
ωω

ω
ωω +=++  (16) 

 2
021 ωωω =cc  (17) 

Rearranging and grouping equations of the latest 
system, we arrive at expressions for Qc, ωc1 and ωc2 of the 
cascade realization (Geffe equations) [3]: 
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If we equate numerator in (9) and (6) we obtain: 

 22
21 LPLPcc Bkkk ω⋅=⋅ . (20) 
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B. Voltage transfer function of the  Biquartic section 
Consider the transfer function of the Biquartic section 

in Fig.1 given by (5). Since the positions of the poles of 
TBQ(s) is determined by the product βkb1kb2, i.e. not only 
by β, we will use the designation F (F=βkb1kb2) in order to 
simplify the expression. We rewrite (5) in the form: 
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Poles of the transfer function are determined by the 
denominator of the Biquartic transfer function: 
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It is evident that for F=0 (β=0, kb1, kb2 ≠0) the BQ 
consists of the two Biquads connected in the cascade, and 
D(s) represents the denominator of (6), i.e. of the cascade. 

Consider the commonly used cascade realization and 
compare it with the Biquartic section (both of fourth 
order) shown in Fig. 2. If we equate the coefficients 
multiplying the potentions of complex variable “s” in (21) 
to (9), we obtain the system of equations: 
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Because it is given above [see (18) and (19)]: 
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we have: 

 2
021 ωωω =bb , (28) 

and we choose  

 021 ωωω == bb . (29) 

Now the system of equations (23)–(26) is simplifying into 
the system (note that (23) and (25) have become 
identical): 
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Rearranging it we obtain the condition for determining 
solutions: 

 0))(( 1212 =−− bbbb QQωω . (32) 

We have two equations (30) and (31) and three unknowns 
to be determined Qb1, Qb2 and F. One of the unknowns can 
be freely chosen (therefore we have one degree of 
freedom). We choose pole Q factors of the sections Tb1, 
Tb2 to have two limiting values of Q-factors:  

1. Sections Tb1, and Tb2 have identical Q-factors. 

2. One of the sections Tb1 or Tb2 has an infinite Q-
factor. 

Between these two limiting cases for Q-factors there are 
infinite possibilities, which turn to be more sensitive, and 
we do not treat them separately. 

C. Equal Q-factors Qb1=Qb2 [4] 
The sections Tb1 and Tb2 are becoming identical, and 

we have: 

 c
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Feedback factor F takes the value defined by an 
expression: 
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D. One Q-factor is in infinity: Qb2=∞ 
One Q-factor is becoming infinite, while other has the 

value: 
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Pole frequencies are the same as in the previous case: 

 21021 ccbb ωωωωω === . (37) 

Feedback factor F is then given by: 
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IV. EXAMPLES 
In this section we realize three examples of the active-

RC BP filters: one for the cascade (CAS) case in the 
Section III.A, and two for the Biquartic (BQ) cases in the 
Sections III.C and III.D. Consider two approximations: i) 
Butterworth (with normalized LP prototype parameters: 
ωLP=1, QLP=0.707107), and ii) 0.5dB-ripple Chebyshev 
(ωLP=1.231342, QLP=0.863721 [a higher pole-Q case]) 
that are transformed into BP characteristics with 
normalized center frequency ω0=1 and bandwidth B=0.1. 
Filters are then denormalized to the frequency 10kHz. The 
active realization is shown in Fig. 3 and the element 
values are in Table I. Corresponding amplitude-frequency 
characteristics are shown in Fig. 4. 
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Generally, the transfer function of each Biquad shown 
in Fig. 3 has the form given by (4), with: 
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Note that in this realization we do not use a separate 
operational amplifier for negative feedback. Instead, we 
lead the output signal to the positive input of the first 
operational amplifier in the first biquad. As a consequence 
the feedback factor F is determined by: 

 2
11111

1

01

1
21

11 b
b

FF
bb k

CRR
R

R
RkkF ⋅⋅








++⋅=⋅⋅= ββ , (40) 

where 

 β=RF3/(RF3+R03). (41) 

It is evident from (39) that for Ri2=∞ the pole-Q factor is 
infinite (e.g., for R22=∞ in Fig. 3 there is Qb2=∞). 

We choose value of RF3 and calculate R03 depending on F: 
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It is evident from (40) and (41) that for R03=∞ and 
RF3=0 the feedback factor F=0 and the circuit in Fig. 3 
becomes cascade of Biquads.  

Using (39)−(42) we calculate normalized elements of 
filter examples and denormalize the filter to the center 
frequency f0=10kHz and bandwidth B=1kHz. We choose 
denormalization resistance R0=1.591kΩ in order to obtain 
denormalization capacitance C0=10nF. The obtained 
values are given in Table I. In order to provide maximum 
dynamic range it will be needed to perform gain 
optimization in the next step, which is in this case not 
possible in the simple non-iterative way. It is needed to 
perform numerical optimization or the optimization in an 
iterative way.  

 
Figure 3.  Realization of Biquartic section with two general purpose active-RC Biquadratic sections and feedback. 

TABLE I.  ELEMENT VALUES OF THE CIRCUIT IN FIG. 3 FOR THE BUTTERWORTH AND CHEBYSHEV EXAMPLES DENORMALIZED TO 10KHZ. 

Elements Butterworth Chebyshev 0.5dB 
CAS BQ Q1=Q2 BQ Q2=∞ CAS BQ Q1=Q2 BQ Q2=∞ 

R01 175.923kΩ 116kΩ 95kΩ 502.16kΩ 110kΩ 100kΩ 
R11 1.557Ω 1.536kΩ 1.515kΩ 0.818Ω 1.475kΩ 1.412kΩ 
R12 22.521kΩ 22.507kΩ 11.253kΩ 31.05kΩ 22.327kΩ 11.163kΩ 
R13 1.895kΩ 1.633kΩ 1.617kΩ 1.681kΩ 1.746kΩ 1.612kΩ 
RF1 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 
Rb1 9.199kΩ 10.086kΩ 10.326kΩ 19.72kΩ 9.821kΩ 11.111kΩ 
C11 10nF 10nF 10nF 10nF 10nF 10nF 
C12 10nF 10nF 10nF 10nF 10nF 10nF 
R02 95.784kΩ 135.714kΩ 214.364kΩ 85.749kΩ 107.843kΩ 144.144kΩ 
R21 1.205kΩ 1.533kΩ 1.574kΩ 1.446kΩ 1.504kΩ 1.541kΩ 
R22 22.521kΩ 22.507kΩ ∞ 31.05kΩ 22.327kΩ ∞ 
R23 1.972kΩ 1.608kΩ 1.591kΩ 1.75kΩ 1.629kΩ 1.591kΩ 
RF2 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 
Rb2 9.918kΩ 10.133kΩ 10.104kΩ 9.317kΩ 10.328kΩ 10.322kΩ 
C21 10nF 10nF 10nF 10nF 10nF 10nF 
C22 10nF 10nF 10nF 10nF 10nF 10nF 
R03 ∞ 459kΩ 138.438kΩ ∞ 304.758kΩ 149.566kΩ 
RF3 0 10kΩ 10kΩ 0 10kΩ 10kΩ 
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(a)  (b)  
Figure 4.  Simulated amplitude-frequency characteristics of filter examples in Table I using Altium Designer. (a) Butterworth. (b) Chebyshev. 

(a)  (b)  

(c)  (d)  

(e)  (f)  
Figure 5.  Simulated Schoeffler sensitivities of filter examples in Table I using Matlab. (a), (c), (e) Butterworth. (b), (d), (f) Chebyshev. 

V. RESULTS OF SIMULATION AND MEASUREMENT 
The sensitivity to component tolerances and output 

thermal noise, are compared for the cases of cascade (in 
Section III.A) and for the two BQ realizations: i) equal Q-
factors: Qb1=Qb2 (in Section III.C); and ii) one Q-factor is 
in infinity: Qb2=∞ (in Section III.D). Sensitivity analysis is 
performed using MATLAB procedures given in [5], 
assuming relative changes of resistors and capacitors to be 
uncorrelated random variables, with a zero-mean Gaussian 
distribution and 1% standard deviation. The standard 
deviation (which is related to Schoeffler’s sensitivities) of 
the variation of the logarithmic gain ∆α=8.68588 
∆|TBP(ω)|/|TBP(ω)|[dB], with respect to passive elements, is 
calculated for filter examples from Table I and shown in 
Fig. 5. We conclude that low-sensitivity BP filters can be 

designed using CBQ filters with equal Q-factors: Qb1=Qb2. 
Using the Altium Designer program output thermal noise 
spectral density of filter examples in Table I was 
generated and shown in Fig. 6. In the simulation a model 
of TL081/TI (Texas Instruments) FET input opamp, 
having typical values, as found in the data-sheets 
ena(f)=17nV/√Hz and ina1( f )≈ina2( f )=0.01pA/√Hz is used. 
From Fig. 6 one can conclude that the minimum noise 
possesses CBQ filters with equal Q-factors: Qb1=Qb2. 

Measurements were performed on the same examples 
realized on separate printed circuit boards using 1% 
passive elements and TL081/TI opamps. For each filter, 
the output noise spectral density was measured using a 
typical university lab environment. The measurement 
equipment consisted of a high-quality HP 4195A Network 
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(a)  (b)  
Figure 6.  Simulated output thermal noise spectral densities of BQ filter examples in Table I using Altium Designer. (a) Butterworth. (b) Chebyshev. 

(a)  (b)  

(c)  (d)  
Figure 7.  Measured output thermal noise spectral density of BQ filter examples in Table I. (a), (c) Butterworth. (b), (d) Chebyshev. 

Analyser, which measures the spectrum of noise 
(Spectrum mode). Detailed description of measurement 
procedure and equipment is given in [6]. Measured results 
are shown in Fig. 7, and reconfirm the results obtained by 
simulation.  

VI. CONLUSION 
In accordance with a simulated sensitivity by 

Schoeffler in realizations of amplitude-frequency 
characteristics large discrepancies in implementation with 
one infinite Q factor are expected. Thus, better results are 
gained using Biquartic sections with identical Q factors. 
Deviations in amplitude-frequency characteristics are 
predictable in shifting of the center frequency and 
amplitude distortion. Observing Schoeffler sensitivities it 
is visible that the sections with one infinite Q factor have 
increased sensitivities at the band-edges. 

In order to reduce the overall sensitivities we use the 
three-amplifier biquads as building blocks for biquartic 
filter because of their considerably lower sensitivities 
comparing to single-amplifier structures, at the expense of 
the increased power consumption. 

The sensitivity differences between the two CBQ 
cases are smaller on Chebyshev filter frequency response. 
Since Chebyshev transfer function has higher Q-factors 
than Butterworth it leads us to conclusion that the 
differences are smaller in the highly selective BP filters. 
The cascade structure has considerably bigger sensitivities 
in all cases. 

Measured spectral density of circuit output thermal 
noise is very close to the simulation results. We note 
better results in Biquartic sections with identical Q factors. 
Both Biquartic realizations are preferable over the 
common cascade structure. In all measurements and 
simulations wins Biquartic section with identical Q factors 
and imposes as an optimal realization of low- sensitive 
filters.  
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