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Abstract 
In this paper transformations, which are very often 

used in design of active filters, are summarized, and 
used for revealing the relations between different classes 
of active filter sections. Among various transformations 
we distinguish: frequency transformations and network 
transformations. As frequency transformation examples 
we consider the well known “low-pass to band-pass” 
(LP–BP) and less known “lossy low-pass to band-
pass”(LLP-BP) frequency transformation. As examples 
of network transformations, which are performed by 
network elements substitution we consider (i) “lossy” 
LP–BP network transformation: to obtain BP filter it 
substitutes each resistor of the LP prototype filter by a 
series RC circuit, and each capacitor by a parallel RC 
circuit; and (ii) complementary transformation: passive 
network in negative feedback loop is transformed into 
passive network in positive feedback loop of operational 
amplifier.  

 
1. Introduction 

The design of BP filters is usually performed using the 
well-known LP-BP frequency transformation applied to 
an LP prototype filter transfer function. Corresponding 
network LP-BP transformation can be applied only in 
the design of passive LC filters. Since it is a reactance 
transformation resulting with the use of inductances, it 
can not be applied for the design of active filters. One 
possible solution is “lossy” LP-BP (LLP-BP) 
transformation which is presented in this paper [1]. 

Another network transformation we deal with, belongs 
to the group of complementary [2]-[4] transformations. 
It relates BP filter circuits based on positive feedback to 
those based on negative feedback. As a consequence 
their passive sensitivity properties are closely related, as 
well as their gain-sensitivity products (GSP). This 
transformation simplifies the filter realization 
procedures, as well as optimization of filter sensitivities. 

 
2. Lossy LP-BP Transformation 

The advantage of a passive-LC BP filter realization 
lies in the existence of reactance LP-BP transformation, 
which defines the BP filter structure and enables a 
straightforward realization procedure. An LC BP filter is 
obtained by replacing each inductor LLP of an LP 
prototype filter, by a series connection of La and Ca and 
each capacitor CLP by a parallel combination of Lb and 

Cb. Such an element transformation, gives a unique BP 
structure, following directly from LP-BP frequency 
transformation 
 ( ) BsssLP

2
0

2 ω+= . (1) 
It transforms the complex frequency variable sLP into a 
rational function producing the transfer function of a BP 
filter with the center frequency ω0 and the bandwidth B. 

The application of the LP-BP frequency 
transformation (1) to some nth-order low-pass prototype 
filter gives a symmetrical 2nth-order BP filter whose 
transfer function can be represented as a product of n 
2nd-order transfer functions  
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LP-BP frequency transformation (1) is readily used in 
active BP filter designs, but application of the 
corresponding LP-BP reactance transformation makes 
no sense. One possible solution is a slight modification 
called “lossy” LP-BP transformation applied to the 
network realizing a translated LP prototype transfer 
function. The basic idea is the following. The original 
LP prototype transfer function is transformed by 
introducing the shifted complex frequency variable p  
 δ+= LPsp , (3) 
BP transfer function is created by applying the LLP-BP 
transformation to p, i.e. 
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Note that the combination of (3) and (4) gives the 
same BP filter transfer function as the conventional LP-
BP transformation (1), applied to the original LP transfer 
function. However, a realization of a BP filter is enabled 
applying the corresponding impedance transformation to 
the modified LP prototype filter. The procedure can be 
briefly summarized through the following steps: 
Given LP prototype transfer function T(s) 
- Choose the shift constant δ 
- Find new transfer function T1(p)=T(s)=T1(s+δ) 
- Realize LP prototype having the transfer function T1(p) 
- Apply LLP-BP to T1(p) and obtain TBP(s) 
- Perform the LLP-BP impedance transformation to LP 
prototype filter. 

The procedure is straightforward and it is described in 
more detail through the examples that follow. 
 
 2.1 Second-Order BP filter 

Consider a 1st-order LP filter circuit in Fig. 1(a).  
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Fig. 1. 1st-order LP RC circuit. (a) passive (b) active  

The voltage transfer function T(s) for this circuit is 
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It has a negative real pole sp1=-σ=-(RC)-1. Substituting  
 s=p-δ (6) 
a new LP prototype function T1(p) is obtained  
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The pole of T1(s) is shifted to the right for an amount δ. 
It can be moved even in the right-half plane. In that case 
the 1st-order circuit with an operational amplifier, shown 
in Fig. 1(b), has to be used for realization of T1(s). 

    
Fig. 2. s-variable translation. (a) Pole shift, (b) p-plane 

The voltage transfer function T1(p) for this circuit is  
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where the shift δ equals αβσ. For the simplicity reasons 
we will use normalized elements of the LP prototype, 
i.e. R=1, C=1, giving σ=1 and δ=αβ. The result is 
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At this point we introduce the impedance 
transformation which substitutes each resistor of the LP 
prototype filter by a series RC circuit, and each capacitor 
by a parallel RC circuit, as shown in Fig. 3. 
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Fig. 3. RC impedance transformation. 
Consequently the normalized variable p of the LP transfer 
function is transformed into a rational function, i.e. 
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Comparing (4) and (11) we obtain 
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This procedure results by a 2nd-order BP filter shown 
in Fig. 4, which is a type A circuit described in [5].  
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Fig. 4. Second-order active-RC BP filter circuit. 

The voltage transfer function TBP(s) of this circuit is  
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The value of δ is not arbitrary. It is limited by the 
resistance and capacitance ratios. From (12) we have 
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The expression under the square roots is positive if  
 pqB 22 min0 ==≥ δωδ . (15) 
The constant δ is, therefore, limited by the ratio of the 
central frequency and the bandwidth of the BP filter. 
There are many degrees of freedom in realization of (13) 
by choosing parameters α, β and δ. The main criterion is 
to minimize the transfer function sensitivities. As shown 
in [1], this is the case when (15) is satisfied, i.e. 
 2minδ== baab RRCC . (16) 
Design Example: As an illustration consider a 2nd-order 
BP filter, with the center frequency f0=1kHz, bandwidth 
B=500Hz, and the pass-band gain K=1. The design is 
performed by the following design procedure: 
i) For a given 2nd-order BP filter pole Q, choose δ. 
Using (15) we calculate 
 422 0min === pqBωδ . (17) 

Let us denote the capacitance ratio as ρ,=Cb/Ca, and 
the resistance ratio as r=Ra/Rb. In order to analyze their 
influence on sensitivities to component tolerances, and 
to find an optimal δ, three realizations corresponding to 
two values of δ are analyzed. First we choose δ=δmin=4, 
and from (16) we have ρ=r=δmin/2=2 (circuit 1). Next 
we choose δ=6 and using (14) obtain ρ=5.236 and 
r=0.764 for plus sign of the square root (circuit 2), and 
ρ=0.764 and r=5.236 (circuit 3) for minus sign. Let us 
proceed with calculation of circuit no 2. 
ii) Find the new LP prototype with shifted poles by δ: 
Using (6), a new function T1(p) with Γ=-5 is obtained. 
To realize negative Γ we have to calculate gain β. 
Choosing α=0.5, from (9) it follows β=δ/α=12. 
iii) Realize BP filter circuit components.  
We choose Cb=5nF, and using (12) Ca=Cb/ρ=955pF, 
Ra=1/(B⋅Cb)=63.7kΩ and Rb=B/(Ca⋅ω2

0)=83.3kΩ. The 
remaining elements are: Ra1=Ra/(1-α)=127kΩ; Ra2= 
Ra/α= 127kΩ. Let RG=1kΩ, then RF=RG(β-1)=11kΩ. 
The element values for this case and for the other two 
are given in Table 1. Fig. 5(a) shows the transfer 
function magnitude α(ω)=20logT(jω)[dB].  
 

(b) (a) 



No. Ra Rb r Ca Cb ρ β δ δmin
1) 63.7 31.8 2 2.5 5 2 8 4 4 
2) 63.7 83.3 0.76 0.96 5 5.27 12 6.0 4 
3) 63.7 12.2 5.27 6.55 5 0.76 12 6.0 4 

Table 1 Component values of 2nd-order filters from Fig. 4 (R 
in kΩ, C in nF). 

 

 
Fig. 5 (a) Magnitude, and (b)-(d) results of Monte Carlo 
analysis of the filters in Table 1. 
Monte Carlo simulation results are presented in Fig. 
5(b)-(d). The relative element changes are assumed as 
uncorrelated random variables, with a zero-mean 
Gaussian distribution and 1% standard deviation.  

 
Fig. 6 Sensitivities of the BP filters in Table 1. 
The standard deviation (related to the Shoeffler 
sensitivities) of the gain variation with respect to the 
elements variations ∆α=8.68588 ∆|TBP(ω)|/|TBP(ω)|, is 
calculated for the filter examples in Table 1 and shown 
in Fig. 6. We see that the best results are obtained if 
δ=δmin, i.e. for the circuit no. 1, while the two remaining 
circuits have similar but worse sensitivities. 
 
 2.2 Fourth-Order BP filter 

Consider the 2nd-order LP filter shown in Fig. 7.  
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Fig. 7. 2nd-order low-pass filter. 

The BP filter shown in Fig. 8 is obtained by the 
element substitution (10) to that circuit. Since the 2nd-
order LP filter prototype for the design of 4th-order BP 
filter, has a complex pole pair we do not need to shift 
any real poles, and modify it as we did in the 1st-order 
LP prototype case. As shown in [1] minimal δ provides 

the low sensitive circuit to the component tolerances. 
Further sensitivity reduction can be achieved applying 
the “impedance tapering” to the LP prototype [6]. 
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Fig. 8. Fourth-order BP filter circuit  
 2.3 Higher-Order BP filter 

High-order BP filters can be realized using the same 
procedure. There is, however, a difference between the 
filters that use odd-order and even-order LP prototype. 
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Fig. 9. Modified 3rd-order LP filter prototype 

To construct a 6th-order BP filter, a 3rd-order LP 
prototype filter shown in Fig. 9 is used.  
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Fig. 10. The 6th-order BP filter circuit  

It is a slightly modified standard single-amplifier 3rd-
order LP filter configuration. Feedback resistor R1’’ is 
added to enable a shift of a real pole together with 
complex poles. Resulting BP filter is shown in Fig. 10.  

A 4th-order LP prototype for the realization of an 8th-
order BP filter is shown in Fig. 11. Its transfer function 
has only complex-conjugate poles and their δ-shift needs 
no additional feedback connections.  
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Fig. 11. The 4th-order LP prototype filter. 

The element substitution (10) applied to this circuit, 
gives the BP filter shown in Fig. 12. 
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Fig. 12. The 8th-order BP filter circuit. 

(b) (a) 

(c) (d) 



3. Complementary transformation 
Evaluation of active-RC filter quality involves various 

parameters such as: simple realizability, repeatability, a 
possibility of straightforward procedure of parameter 
calculation, small number of components, low power 
consumption, low noise, and the most often, low filter 
sensitivity to passive and active component tolerances. 

Active-RC single-amplifier filters with RC network in 
the feedback loop satisfy most of these performances. 
However, calculation of filter elements and optimization 
of sensitivities can be very tedious and time consuming. 

Some filter configurations can be obtained from 
another ones with known performance using certain 
network transformations. Also, if the original filter is 
optimized, the transformation can give an optimized 
circuit as well, making the realization procedure simple. 
We pay an attention to a transformation belonging to a 
group of complementary transformations [3], [4]. As an 
example a 2nd-order active BP filter section is used. 
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Fig. 13. Single operational amplifier active filter 

Second-order active filters are often realized as a 
single amplifier form shown in Fig. 13, with an RC 
network in the negative feedback loop. Using the 
equivalent circuit shown in Fig. 14 we can write the 
equations for the voltages at the nodes 4 and 5 
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are the voltage transfer functions corresponding to jth 
input and ith output node of network N. It is known that [4] 
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Fig. 14. Active filter section equivalent circuit. 
Different configurations and transfer functions of the 
complete section can be obtained by connecting the 
input nodes 1, 2, or 3 to the section input or amplifier’s 
output or to the ground. We shall consider two cases. 
Case I: First we consider a circuit presented in Fig. 13, 
where the node 1 is the input, 2 is ground node and node 
3 is connected to the operational amplifier output, i.e. 
 outin VVVVV === 321 ;0;  (21) 
V4 and V5 are the voltages at the virtual short circuit, i.e. 

 54 VV ≅ . (22) 
Using (18), (21) and (22) the overall transfer function is 
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Case II: If we interchange the output and ground 
terminal of the circuit from Fig. 14, we obtain a circuit 
in Fig. 15, with the node 2 of the network N connected 
to the operational amplifier output and grounded node 3. 
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Fig. 15. Transformed active filter circuit. 

Note that the voltage source must also be inverted in 
the process of exchanging terminals. This cannot be 
done in practice, but the equivalent result, i.e. reversing 
the output voltage polarity, can be achieved by inverting 
the input terminals of the operational amplifier. 
Therefore, the practical circuit has the form shown in 
Fig. 16. For this section we can write 
 0321 === VVVVV outin  (24) 
Combining (18), (24) and (22) gives 
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Fig. 16. Complementary active filter section. 
Comparing (23) and (25) and applying (20) we get 
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i.e. transfer functions reciprocals are complementary. 
They have different denominators and equal numerators. 
Therefore, if the first circuit is a BP filter, another one is 
a BP filter as well. 

The representative examples are two well-known BP 
2nd-order circuits. The circuit in Fig. 17 is the Single-
Amplifier-Biquad (SAB), with an RC network in the 
negative feedback loop of the operational amplifier and 
corresponds to the topology presented in Case I above. 
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Fig. 17. Active filter SAB section  

Complementary to the SAB section is Sallen and Key 
(SAK) section shown in Fig. 18.  
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Fig. 18. Complementary SAK active filter section  
SAK section uses positive feedback of the operational 
amplifier and corresponds to the Case II above. 
Generally both circuits have the transfer function  
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Assuming that passive RC networks in the amplifier’s 
positive (SAB) and negative (SAK) feedback loops are 
equal, we will use the following transfer function of the 
passive RC network 
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The transfer function for the SAB circuit has the form 
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and for the SAK circuit  
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They must be identical, i.e. T1(s)=T2(s)=T(s), and 
comparing their numerators and denominators we obtain 
 ( ) ).1(   ;1 221221 αββααα −=−=  (31) 

Finally, the coefficients of the transfer function (27) 
are given by 
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where b1=β1, and b2=β2(1-α2). 
Design Example: As an illustration consider a 2nd-order 
BP filter with f0=1kHz, B=500Hz and K=1.  

For the SAB design we choose ρ=C2/C1=1, r=R3/Rp=1, 
C2=5nF. Other components following from (28b) are 
given in line 1 of Table 2.  
No. R1 R2 α1 Rp R3 r C1 C2 ρ β1 
1) 159 39.8 0.2 31.8 31.8 1 5 5 1 2.5 
2) 114 44.6 .286 31.8 127 4 1.25 5 4 1.75 

Table 2. SAB filter component values (R in kΩ, C in nF). 

From (32c) 5.21 =β , and with R5=1kΩ we calculate 
R4=(β1-1)⋅R5=1.5kΩ. From (32a) 2.01 =α . Finally we 

calculate R1=Rp/α1=159.15kΩ, and R2=Rp/(1-
α1)=39.79kΩ. Filter no. 2 in Table 2 is the “ideal 
impedance tapering” realization, i.e. with ρ=r=4. 

The design of the SAK section is now very simple. 
Using the elements of the SAB section from Table 2, we 
only need to calculate the new values of constants α and 
β. Thus for circuit no. 1 using (31) we obtain 
 .3)1(   ;1667.01 112112 =+==+= αββααα  (33) 
The resistors R1, R2, and R4 are: R1=Rp/α2=191kΩ, 
R2=Rp/(1-α2)=38.2kΩ, R4=(β2-1)⋅R5=2kΩ. For SAK no. 
2 we have α2=0.222, β2=2.25, R1=143.24kΩ, 
R2=40.93kΩ, and R4= 1.25kΩ.  
Active sensitivities can be reduced minimizing the GSP 
in the filter design. Passive sensitivities are reduced 
using “impedance tapering” [7]. It can be shown that 
optimization of SAB circuit gives the optimum for SAK 
circuit as well [8]. The results of using Monte Carlo 
simulations for the SAB section, are shown in Fig. 19. 
Better results are obtained for the impedance-tapered 
circuit, i.e. for the circuit no. 2.  

 
Fig. 19 Monte Carlo runs of SAB BP filters 

MC runs for the SAK section are presented in Fig. 20. 
Better sensitivity is obtained for the circuit no. 2, again. 

 
Fig. 20 Monte Carlo runs of SAK BP filters  
Shoeffler sensitivities of both SAB and SAK circuits are 
presented in Fig. 21. We can conclude that two 
complementary circuits in Fig. 17 and Fig. 18 have very 
similar characteristics concerning sensitivity to passive 
filter components. SAB circuit shows somewhat lower 
sensitivity. 

 
Fig. 21 Shoeffler sensitivities of SAB and SAK filters 
 
4. Combining L-LP-BP and Complementary 
transformations 

Consider the 1st-order circuit with an operational 
amplifier shown in Fig. 1(b). If we apply complementary 
transformation to this circuit we obtain the circuit in Fig. 

(28b)



22, with an RC network in the negative feedback loop. 
The voltage transfer function T2(p) for this circuit is  
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Fig. 22. Complementary 1st-order shifted pole circuit  

We choose again σ=1 for simplicity. The transfer 
function T2(p) as defined by (34) has the same form as 
T1(p) in (8). To realize T1(p)=T2(p) their numerators and 
denominators must be identical, i.e. 
 112 βαβ = ; 12 /12 αα −= . (35) 
To provide the same pole shift for value of δ, as in the 
positive feedback case, we need to calculate a gain β2. 

Application of L-LP-BP transformation to that circuit 
gives a new BP filter circuit shown in Fig. 23. It is 
complementary to the one in Fig. 4 and we expect that it 
has sensitivity properties very similar to the original 
circuit. Consequently, optimizing GSP and minimizing 
sensitivity to passive components by using minimum δ 
in filter design can be inherited from the original circuit. 
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Fig. 23. Complementary 2nd-order active-RC BP circuit. 

For the circuits in Table 1 we calculated new values 
for gain β. Thus for no. 1 using (35) we have β2=4, and 
for circuits no. 2, 3 we have β2=6. We used element 
values from Table 1 and new gain β to built circuits as 
in Fig. 23. Monte Carlo runs and Shoeffler sensitivities 
are presented in Fig. 24 and Fig. 25, respectively. We 
can conclude that min. sensitivity is obtained for the 
circuit no.1 (minimum δ), again. Two complementary 
circuits in Fig. 4 and Fig. 23 have very similar 
sensitivity properties to passive components. 

 

 
Fig. 24 2nd-order BP filter as in Fig. 23: (a) Magnitude. (b)-(d) 
Monte Carlo runs. 

 
Fig. 25 Sensitivities of 2nd-order BP filters from Fig. 23. 

Comparing all realized 2nd-order BP filters it can be 
concluded that both SAB and SAK topologies have 
better sensitivities than topologies obtained using L- LP-
BP transformation. In all cases filters with negative 
feedback always have lower sensitivities. 
 
5. Conclusions 

Lossy LP-BP transformation enables BP filter 
realizations using direct component transformation and 
straightforward design procedure. Complementary 
transformation relates the designs, which use a passive 
filter sub-network in positive and negative feedback 
loop of OA. Component values calculated for one 
topology can be used for calculation of the 
complementary topology circuit. Their Gain-Sensitivity-
Products (GSP) and passive sensitivity performances are 
also closely related. 
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