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Abstract

In this paper the design of second-order band-pass
(BP) active RC filters using a modified low-pass to
band-pass (LP-BP) frequency transformation is
presented. The transformation is applied to a first-order
low-pass (LP) filter as the (odd-order-)prototype, from
which a single-amplifier second-order BP filter is
constructed. The operational amplifier is added to the
first-order LP circuit in order to provide a low output
impedance and supply a positive feedback loop to enable
a pole shifting process needed in the realization. It is
shown that a BP filter can be realized by substitution of
resistor and capacitor in the low-pass prototype filter,
by serial and parallel RC circuits in the resulting band-
pass structure. A Schoeffler sensitivity is used as a
measure of the magnitude sensitivity to component
tolerances. A step-by-step design procedure is verified
for several second-order band-pass filter circuits, using
different impedance scaling ratios, resulting by different
sensitivities. It is shown that the circuit with equal
impedance scaling ratios yields the best results.
Obtained results are double-checked using PSPICE.

1. Introduction

The design of BP filters is usually performed by means
of the well-known LP-BP frequency transformation
applied to a LP prototype filter transfer function [1-4].

In the previous paper [3] we presented a new
procedure for the realization of single-amplifier active
RC fourth-order BP filter directly from a given second-
order LP prototype structure, using the prototype
impedance transformation, which corresponds to the so-
called lossy LP-BP transformation [1,2]. Lossy LP-BP
transformation is applied to an LP prototype, which has
the complex poles shifted to the right-half of the
complex frequency plane. The shifting procedure is
performed, by increasing the gain B of a single amplifier
LP prototype.

In this paper we extend the design procedure to the
filter, which has a negative real pole in a prototype
circuit. In order to shift real pole in the right-half plane

by the amount of 8, we made some modifications to the
circuit. An operational amplifier is added to the first-
order low-pass (LP) prototype filter circuit, in order to
provide positive feedback loop, which enable the pole
shifting procedure. The method can be extended to
higher-order BP circuits, which have odd-order LP
prototypes (e.g. sixth-order BP filter has a third-order
LP prototype). Furthermore, it can be shown that by
increasing the impedance scaling factors, sensitivity to
component tolerances can be significantly reduced [6].
However, describing such impedance scaling goes
beyond the scope of this paper.

2. Design of Second-Order Band-Pass Filters
using the LP-BP Transformation

Consider the first-order passive RC network shown in
the Fig. 1.

Fig. 1 1%-order passive RC low-pass circuit

The voltage transfer function 7(s) for this circuit is
given by
-1
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This function has one negative real pole s,=-y, where
Y=(R,C,)"". For simplicity we choose R,;=1 and C;=1 and
we have the pole y=-1, i.e. the transfer function in (1) is
normalized.
Applying standard low-pass to band-pass frequency
transformation, defined by
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(@ is the center frequency and B is the bandwidth of the
BP filter) to the normalized first-order low-pass transfer
function as given in (1), we obtain the second-order

band-pass transfer function, given by
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We present a straightforward realization procedure,
with direct element transformation which gives a unique
BP filter structure with its component values, as
opposite to the standard design procedure in which a
designer picks a known BP active filter structure and
calculates its elements by comparing the corresponding
transfer function parameters with the parameters of the
chosen structure [1,2].

To modify low-pass prototype transfer functions and
prepare it for a new design method described we apply a
frequency transformation [3] on (1):

s=p-0, 4)
where & is a real positive constant. We obtain a new
transfer function T(p) with new real pole p, in the
complex p-plane (Fig. 2(b)). The new pole is shifted for
amount & as shown in the Fig. 2 b). Since the constant &
can be freely chosen, the pole may lie even in the right-
half p-plane. The new LP filter prototype transfer
function is
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where real pole p,=-I"is represented by
I'=1-0. (5b)
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Fig. 2 Introducing the s-variable transforma-tion.
(a) Pole shift for 8. (b) New p-variable.

The transfer function (5) can be realized by first-order
circuit, with an operational amplifier shown in Fig. 3.

Fig. 3 1 order active RC low-pass circuit.

Choosing R,=1 and C;=1, the voltage transfer function
T1(p) for this circuit is given by

Vl Cp+l- OLB p+1- 5 p+T°

(6)

Where the shift 6 equals ofy. Voltage attenuation o,
0<o<1 is realized by splitting input resistor R;, and
B=1+R:/Rs21 is the positive amplifier gain. Note that
with the circuit shown in Fig. 3, it is possible to realize
positive and negative real pole choosing the appropriate
values for o and B.

As shown in [3] a new “lossy”-transformation in the
variable p is given by

s> +o;
B -s

Applied to the transfer function T(p) it produces the
same BP filter transfer function of the form (3).

We also introduce the corresponding impedance
transformation which substitutes each resistor of the LP
prototype filter by a series resistor and capacitor circuit,
and each capacitor by a parallel resistor and capacitor
circuit, as shown in Fig. 4, i. e.

1/R, +sC, 1

1
R o e = s R PO 4G 6
"R - s, el ®)

Dmr%qu

Fig. 4 RC impedance transformation as a
consequence of the “lossy” LP-BP transform.
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Since we choose R;=1 and C;=1 the substitution given
with eq. (8) can be rewritten in the form of the
transformation as given with eq. (7), i.e.
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Comparing (7) and (9) we have
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As a result of this procedure we obtain the second-

order band-pass filter shown in Fig. 5.
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Fig. 5 Second-order band-pass filter circuit
(using LP-BP transformation).

The voltage transfer function 7(s) for this circuit is
obtained by applying the LP-BP transformation (7) on
the low-pass prototype transfer function (6), i.e. we have
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If we introduce the impedance ratios » and p (as in [6])
r=R,/R,; p=C,/C, (12)
the expressions in (10) can be rewritten as
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Comparison of (11) and (3) gives the pole frequency @y
and pole Q g, as

1 p @,
® = Poya D (14
" TR,.C, \/: G B 6ri—op)” D

In our design procedure we choose a value of B
)
B== (15)
o

and from (14) and (3b) we have

B=B, 8=, q, =%=Bl. (16)

n

The minimum value of constant & is limited by the
capacitance ratio p=C,/C, or the resistor ratio r=R,/Ry.
This ratio can be calculated from (10), and it is

Since the expression under the square root must be
positive, a realizability constraint on the value of the
constant J is

525 —2%_2 (18)
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From (16) it follows
6min =ZQp' (19)

With (18) expressions (17) can be rewritten as
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or solving for & and &, as

O =24rp, 0=r+p. 21
The designer has many degrees of freedom to realize
transfer function in (11) by choosing parameters o,
and 6. The main criterion is to minimize the sensitivity
of the overall transfer function with respect to the
component tolerances. The results of numerical
examples given in the reference [3] indicate that this
could be the case when 8=0,,,, i.e. for this case:
C, R, 0.
b _ “"a _ “min (22a)
C, R, 2
or

p=r=%ﬂ. (22b)

In this paper we investigate the design of low sensitivity
analytically in order to find more general answer to this

problem. In the following text a Schoeffler sensitivity
will be a measure which we will minimize.

3. Schoeffler sensitivity

The Schoeffler sensitivity is defined as the sum of the
squares of sensitivity functions to all passive elements in
the network, i.e.

m
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where x; are passive elements R, R, Ry, C,, Cp, Rg and

Rp;  f(w) are frequency dependent parameter-
sensitivities. Parameter sensitivities are the sensitivities

of the transfer function magnitude | T(jw) | to the
parameters ¥; (i.e. 8, o, B, B and @) defined as
— ¢lrGol _ T(s)
fi(@)=58] —Re[ij ij (24)

and presented in Table 1. They depend on the
denominator coefficients, of the initial transfer function
and some of them on parameter 8. On the other hand
parameters ), are , o, B, B and a, are expressed by the
passive components (see (10)). We define parameter-to-

component sensitivities Sffif , and present them in Table

2. Both sensitivities, i.e. f{(®) and Sfl_’ form Schoeffler

sensitivity expression (23).
The band-pass transfer function (11) has the magnitude
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Our objective is to find a combination of parameters 9,
o, B, B and ay, which satisfies the transfer function (25)
and in the same time makes the expression (23) minimal.
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Table 1 Parameter sensitivities.

Note that if we change one of these parameters, for
example 0, the other ones, i.e. o and B must be changed
in such a way that the overall transfer function |7(jo)|



(and denominator [D(jw)|) given with (25) remain
constant [4].

Observing expressions in Table 1, we see that some of
them are proportional to the factor d. Others are
inversely proportional to the squared bandwidth B (i.e.
directly proportional to the squared pole Q factor, g,).
Choosing the smallest possible value for & reduces the
parameter-sensitivity and consequently the overall
Schoeffler sensitivity. From (18) it is obvious that we
choose 8, for the minimum value of 8. The sensitivity
will also be smaller for the transfer functions with
smaller pole Q factors.

S*
X; [0 B ) [0 B
Ry | -(12)(1-0) | -1+a | (/8)(1-0) | 1-01
Ro | -(12)o -0l /do | -1+o
R, 12 I
C, -1/2 -0/8
C, 12 -1 p/d
Rr 1-1/B
Rg -1+1/B

Table 2 Parameter-to-component sensitivities.

4. Design Example

As an illustration of the proposed BP filter design
procedure, we consider the practical example of second-
order band-pass filter with Butterworth transfer function,

which has f,=86kHz, qp=1/\/5, K=1. The design can be
carried out by the following step-by-step design
procedure:

i) Starting from the second-order BP filter pole Q,
choose & such that (18) is satisfied and calculate
impedance scaling factors r and p:

If we choose 8=0,,, then we have p=r. With ¢,=0.7071
from (19) we have 6=8,,=2¢,~1.4142 and from (22b)
r=p=0in/2= 0.7071 (circuit No.1). If we choose 6>0 i,
(for circuits No. 2-5) then we calculate » and p from
(20).

ii) Calculate the new low-pass prototype by shifting
the poles by O: Applying (4), the new LP prototype
function T)(p) pole is: [=-0.4142 As we see I is
negative, i.e., the pole lies in the right-half p-plane.
However, when applying the “lossy” transformation, the
pole will be shifted back into the left-half plane by 9.

iii) Realize the new low-pass prototype circuit
components.

To realize negative pole I' we only have to calculate
gain PB. If we choose 0=0.5, then from (15) it follows
B=6/0=2.83.

iv) Starting from the second-order BP filter pole
Sfrequency @, and from (14) choose the capacitor C, and
calculate the resistor Ry:

We choose C,=500pF and with f,=86kHz it follows
R=1/(Cyry)-Jp/r =1/(500-10"2.27-86-10°)=3.7kQ.

v) Calculate the components of the second-order BP
filter:

Using (12) the component values of the RC series and
parallel circuits follow C,= C,/p= 707pF; R= rR,=
2.617 kQ; With 0=0.5 from step iii) (i.e. R;;=R.,»=2R,)
we have R, ;=R,/(1-a)= 5.234kQ; R, ,= R,/o= 5.234 kQ.
Let Rg=10kQ, then R= R;(B-1)= 18kQ. Note that the
value of [=2.82843 (i.e. we choose Rs=10kQ and
R=18.28kQ) remains the same as in the &-shifted low-
pass prototype, (also the feedback attenuator o=0.5
remains the same). A check for the correctness of the
resulting filter circuit in the example was performed
using PSPICE. Fig. 6 shows the magnitude of the
transfer function o(®)=20log | T(jw) | [dB] of the filter
circuit in Fig. 5. Referring to Fig. 5 the resulting filter
has the values given in line 1 of Table 3.

In order to analyze the influence of the shift-constant &
in “lossy” transformation on the sensitivities to
component tolerances, and to find an optimal value of 9,
five different realizations corresponding to three values
of d are analyzed.

No. Ra Rb r Ca Cb 8] B ) 6min

1) 12.62| 3.7 [0.71] 707 | 500]0.71|2.83|1.41|1.41

2) |2.6218.94[0.29] 293 |500|1.71| 4.0 | 2.0 |1.41

3) |2.62|1.53[1.71]1707|500]0.29| 4.0 | 2.0 |1.41

4) [2.62]14.8]0.18] 177 | 500 |2.82| 6.0 | 3.0 | 1.41

5) [2.62]0.9312.82|2823]|500]0.18] 6.0 | 3.0 | 1.41

Table 3 Component values of second-order filter
as in Fig. 5 (resistors in kQ, capacitors in pF).
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Fig. 6 Magnitude of second-order band-pass
filter as in Fig. 5 (line 1 of Table 3).

Parameter sensitivities as defined in Table 1, for five
different realizations in Table 3, are presented in Fig. 7.
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Fig. 7 Parameter sensitivities for filters in Table 3. Transfer function magnitude sensitivity to
(a) ax. (b) B. (c) 6. (d) aand B.

It can be seen that sensitivities to @, and B are
identical for all cases. The sensitivity to parameter 8 is
minimal when 6=0,,,.

An overall sensitivity analysis was performed. The
standard deviation (which is related to the Shoeffler
sensitivities) of the variation of the logarithmic gain
Ao=8.68588 A|Tp(w)|/|Tsp(w)|, with respect to zero
mean and 1% standard deviation of the components, was
calculated and shown in Fig. 8. Although having the
same value of O, note that sensitivities for pairs of
circuits No. 2), 3) and 4), 5) slightly differ, because the
input resistor R, is split into R, and R,, to realize the
voltage attenuator o.. The difference in sensitivity can be
approved using eq. (23).
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Fig. 8 Schoeffler sensitivities for realizations in
Table 3.

As can be seen the best results are obtained for the
value of the shift parameter =0, i.e. circuit No. 1).
Monte Carlo runs, carried out for the same examples,
confirmed this result.

4 Conclusions

A procedure for the design of low-power second-order
allpole band-pass active-RC filters is presented. The
design is based on a low-pass to band-pass
transformation, which is applied to a first-order low-pass
filter prototype. The amplifier of the second-order band-

pass filter provides a low output impedance and supplies
positive feedback to the passive RC-network. It is shown
that a “lossy” LP-BP transformation transforms the
resistors of the low-pass prototype circuit into series
resistor-capacitor combinations, and capacitors into
parallel resistor-capacitor combinations, resulting in a
single-amplifier second-order band-pass filter circuit.
Detailed closed-form design equations for this circuit are
given. In summary, for the second-order allpole Class-4
[2, 5] band-pass filter, ideal impedance scaling with p=r
provides circuits with minimum sensitivity to the
component tolerances of the circuit.
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