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Abstract

In this paper the design of second-order band-pass
(BP) active RC filters using a modified low-pass to
band-pass (LP-BP) frequency transformation is
presented. The transformation is applied to a first-order
low-pass (LP) filter as the (odd-order-)prototype, from
which a single-amplifier second-order BP filter is
constructed. The operational amplifier is added to the
first-order LP circuit in order to provide a low output
impedance and supply a positive feedback loop to enable
a pole shifting process needed in the realization. It is
shown that a BP filter can be realized by substitution of
resistor and capacitor in the low-pass prototype filter,
by serial and parallel RC circuits in the resulting band-
pass structure. A Schoeffler sensitivity is used as a
measure of the magnitude sensitivity to component
tolerances. A step-by-step design procedure is verified
for several second-order band-pass filter circuits, using
different impedance scaling ratios, resulting by different
sensitivities. It is shown that the circuit with equal
impedance scaling ratios yields the best results.
Obtained results are double-checked using PSPICE.

1. Introduction

The design of BP filters is usually performed by means
of the well-known LP-BP frequency transformation
applied to a LP prototype filter transfer function [1-4].

In the previous paper [3] we presented a new
procedure for the realization of single-amplifier active
RC fourth-order BP filter directly from a given second-
order LP prototype structure, using the prototype
impedance transformation, which corresponds to the so-
called lossy LP-BP transformation [1,2]. Lossy LP-BP
transformation is applied to an LP prototype, which has
the complex poles shifted to the right-half of the
complex frequency plane. The shifting procedure is
performed, by increasing the gain β of a single amplifier
LP prototype.

In this paper we extend the design procedure to the
filter, which has a negative real pole in a prototype
circuit. In order to shift real pole in the right-half plane

by the amount of δ, we made some modifications to the
circuit. An operational amplifier is added to the first-
order low-pass (LP) prototype filter circuit, in order to
provide positive feedback loop, which enable the pole
shifting procedure. The method can be extended to
higher-order BP circuits, which have odd-order LP
prototypes (e.g. sixth-order BP filter has a third-order
LP prototype). Furthermore, it can be shown that by
increasing the impedance scaling factors, sensitivity to
component tolerances can be significantly reduced [6].
However, describing such impedance scaling goes
beyond the scope of this paper.

2. Design of Second-Order Band-Pass Filters
using the LP-BP Transformation

Consider the first-order passive RC network shown in
the Fig. 1.
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Fig. 1 1st-order passive RC low-pass circuit
The voltage transfer function T(s) for this circuit is

given by
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This function has one negative real pole sp1=-γ, where
γ=(R1C1)-1. For simplicity we choose R1=1 and C1=1 and
we have the pole γ=-1, i.e. the transfer function in (1) is
normalized.

Applying standard low-pass to band-pass frequency
transformation, defined by
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(ω0 is the center frequency and B is the bandwidth of the
BP filter) to the normalized first-order low-pass transfer
function as given in (1), we obtain the second-order
band-pass transfer function, given by
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We present a straightforward realization procedure,
with direct element transformation which gives a unique
BP filter structure with its component values, as
opposite to the standard design procedure in which a
designer picks a known BP active filter structure and
calculates its elements by comparing the corresponding
transfer function parameters with the parameters of the
chosen structure [1,2].

To modify low-pass prototype transfer functions and
prepare it for a new design method described we apply a
frequency transformation [3] on (1):

s=p-δ, (4)
where δ is a real positive constant. We obtain a new
transfer function T1(p) with new real pole pp1 in the
complex p-plane (Fig. 2(b)). The new pole is shifted for
amount δ as shown in the Fig. 2 b). Since the constant δ
can be freely chosen, the pole may lie even in the right-
half p-plane. The new LP filter prototype transfer
function is
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where real pole pp1=-Γ is represented by
Γ=1-δ. (5b)

     
Fig. 2 Introducing the s-variable transforma-tion.
(a) Pole shift for δδδδ. (b) New p-variable.

The transfer function (5) can be realized by first-order
circuit, with an operational amplifier shown in Fig. 3.
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Fig. 3 1st order active RC low-pass circuit.
Choosing R1=1 and C1=1, the voltage transfer function

T1(p) for this circuit is given by
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Where the shift δ equals αβ. Voltage attenuation α,
0<α<1 is realized by splitting input resistor R1, and
β=1+RF/RG≥1 is the positive amplifier gain. Note that
with the circuit shown in Fig. 3, it is possible to realize
positive and negative real pole choosing the appropriate
values for α and β.

As shown in [3] a new “lossy”-transformation in the
variable p is given by
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Applied to the transfer function T1(p) it produces the
same BP filter transfer function of the form (3).

We also introduce the corresponding impedance
transformation which substitutes each resistor of the LP
prototype filter by a series resistor and capacitor circuit,
and each capacitor by a parallel resistor and capacitor
circuit, as shown in Fig. 4, i. e.
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Fig. 4 RC impedance transformation as a
consequence of the “lossy” LP-BP transform.

Since we choose R1=1 and C1=1 the substitution given
with eq. (8) can be rewritten in the form of the
transformation as given with eq. (7), i.e.
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Comparing (7) and (9) we have
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As a result of this procedure we obtain the second-
order band-pass filter shown in Fig. 5.
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Fig. 5 Second-order band-pass filter circuit
(using LP-BP transformation).

The voltage transfer function T(s) for this circuit is
obtained by applying the LP-BP transformation (7) on
the low-pass prototype transfer function (6), i.e. we have
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If we introduce the impedance ratios r and ρ (as in [6])
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the expressions in (10) can be rewritten as
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Comparison of (11) and (3) gives the pole frequency ω0
and pole Q qp as
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In our design procedure we choose a value of β

α
δ=β (15)

and from (14) and (3b) we have

B1=B, δ1=δ, 
n
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The minimum value of constant δ is limited by the
capacitance ratio ρ=Cb/Ca or the resistor ratio r=Ra/Rb.
This ratio can be calculated from (10), and it is
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Since the expression under the square root must be
positive, a realizability constraint on the value of the
constant δ is
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From (16) it follows
pq2min =δ . (19)

With (18) expressions (17) can be rewritten as
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or solving for δ and δmin as
ρ=δ r2min , ρ+=δ r . (21)

The designer has many degrees of freedom to realize
transfer function in (11) by choosing parameters α, β
and δ. The main criterion is to minimize the sensitivity
of the overall transfer function with respect to the
component tolerances. The results of numerical
examples given in the reference [3] indicate that this
could be the case when δ=δmin, i.e. for this case:
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In this paper we investigate the design of low sensitivity
analytically in order to find more general answer to this

problem. In the following text a Schoeffler sensitivity
will be a measure which we will minimize.

3. Schoeffler sensitivity

The Schoeffler sensitivity is defined as the sum of the
squares of sensitivity functions to all passive elements in
the network, i.e.
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where xi are passive elements Ra1, Ra2, Rb, Ca, Cb, RG and
RF; fj(ω) are frequency dependent parameter-
sensitivities. Parameter sensitivities are the sensitivities
of the transfer function magnitude T(jω) to the
parameters χj (i.e. δ, α, β, B and ω0) defined as
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and presented in Table 1. They depend on the
denominator coefficients, of the initial transfer function
and some of them on parameter δ. On the other hand
parameters χj are δ, α, β, B and ω0, are expressed by the
passive components (see (10)). We define parameter-to-
component sensitivities j

ixS χ , and present them in Table

2. Both sensitivities, i.e. fj(ω) and j
ixS χ  form Schoeffler

sensitivity expression (23).
The band-pass transfer function (11) has the magnitude
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Our objective is to find a combination of parameters δ,
α, β, B and ω0, which satisfies the transfer function (25)
and in the same time makes the expression (23) minimal.
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Table 1 Parameter sensitivities.
Note that if we change one of these parameters, for

example δ, the other ones, i.e. α and β must be changed
in such a way that the overall transfer function T(jω)



(and denominator D(jω)) given with (25) remain
constant [4].

Observing expressions in Table 1, we see that some of
them are proportional to the factor δ. Others are
inversely proportional to the squared bandwidth B (i.e.
directly proportional to the squared pole Q factor, qp).
Choosing the smallest possible value for δ reduces the
parameter-sensitivity and consequently the overall
Schoeffler sensitivity. From (18) it is obvious that we
choose δmin for the minimum value of δ. The sensitivity
will also be smaller for the transfer functions with
smaller pole Q factors.

j

ixS χ

xi ω0 B δ α β
Ra1 -(1/2)(1-α) -1+α (r/δ)(1-α) 1-α
Ra2 -(1/2)α -α (r/δ)α -1+α
Rb -1/2 -r/δ
Ca -1/2 -ρ/δ
Cb -1/2 -1 ρ/δ
RF 1-1/β
RG -1+1/β

Table 2 Parameter-to-component sensitivities.

4. Design Example

As an illustration of the proposed BP filter design
procedure, we consider the practical example of second-
order band-pass filter with Butterworth transfer function,
which has fp=86kHz, qp= 2/1 , K=1. The design can be
carried out by the following step-by-step design
procedure:

i) Starting from the second-order BP filter pole Q,
choose δ such that (18) is satisfied and calculate
impedance scaling factors r and ρ:

If we choose δ=δmin then we have ρ=r. With qp=0.7071
from (19) we have δ=δmin=2qp=1.4142 and from (22b)
r=ρ=δmin/2= 0.7071 (circuit No.1). If we choose δ>δ min

(for circuits No. 2-5) then we calculate r and ρ from
(20).

ii) Calculate the new low-pass prototype by shifting
the poles by δ: Applying (4), the new LP prototype
function T1(p) pole is: Γ=-0.4142 As we see Γ is
negative, i.e., the pole lies in the right-half p-plane.
However, when applying the “lossy” transformation, the
pole will be shifted back into the left-half plane by δ.

iii) Realize the new low-pass prototype circuit
components:

To realize negative pole Γ we only have to calculate
gain β. If we choose α=0.5, then from (15) it follows
β=δ/α=2.83.

iv) Starting from the second-order BP filter pole
frequency ωp and from (14) choose the capacitor Cb and
calculate the resistor Rb:
We choose Cb=500pF and with fp=86kHz it follows
Rb=1/(Cb⋅ωp)⋅ r/ρ =1/(500⋅10-12⋅2π⋅86⋅103)=3.7kΩ.

v) Calculate the components of the second-order BP
filter:

Using (12) the component values of the RC series and
parallel circuits follow Ca= Cb/ρ= 707pF; Ra= r⋅Rb=
2.617 kΩ; With α=0.5 from step iii) (i.e. Ra1=Ra2=2Ra)
we have Ra1=Ra/(1-α)= 5.234kΩ; Ra2= Ra/α= 5.234 kΩ.
Let RG=10kΩ, then RF= RG(β-1)= 18kΩ. Note that the
value of β=2.82843 (i.e. we choose RG=10kΩ and
RF=18.28kΩ) remains the same as in the δ-shifted low-
pass prototype, (also the feedback attenuator α=0.5
remains the same). A check for the correctness of the
resulting filter circuit in the example was performed
using PSPICE. Fig. 6 shows the magnitude of the
transfer function α(ω)=20logT(jω)[dB] of the filter
circuit in Fig. 5. Referring to Fig. 5 the resulting filter
has the values given in line 1 of Table 3.

In order to analyze the influence of the shift-constant δ
in “lossy” transformation on the sensitivities to
component tolerances, and to find an optimal value of δ,
five different realizations corresponding to three values
of δ are analyzed.
No. Ra Rb r Ca Cb ρ β δ δmin
1) 2.62 3.7 0.71 707 500 0.71 2.83 1.41 1.41
2) 2.62 8.94 0.29 293 500 1.71 4.0 2.0 1.41
3) 2.62 1.53 1.71 1707 500 0.29 4.0 2.0 1.41
4) 2.62 14.8 0.18 177 500 2.82 6.0 3.0 1.41
5) 2.62 0.93 2.82 2823 500 0.18 6.0 3.0 1.41

Table 3 Component values of second-order filter
as in Fig. 5 (resistors in kΩΩΩΩ, capacitors in pF).

Fig. 6 Magnitude of second-order band-pass
filter as in Fig. 5 (line 1 of Table 3).

Parameter sensitivities as defined in Table 1, for five
different realizations in Table 3, are presented in Fig. 7.



Fig. 7 Parameter sensitivities for filters in Table 3. Transfer function magnitude sensitivity to
(a) ωωωω0. (b) B. (c) δδδδ. (d) αααα and ββββ.

It can be seen that sensitivities to ω0 and B are
identical for all cases. The sensitivity to parameter δ is
minimal when δ=δmin.

An overall sensitivity analysis was performed. The
standard deviation (which is related to the Shoeffler
sensitivities) of the variation of the logarithmic gain
∆α=8.68588 ∆|TBP(ω)|/|TBP(ω)|, with respect to zero
mean and 1% standard deviation of the components, was
calculated and shown in Fig. 8. Although having the
same value of δ, note that sensitivities for pairs of
circuits No. 2), 3) and 4), 5) slightly differ, because the
input resistor Ra is split into Ra1 and Ra2 to realize the
voltage attenuator α. The difference in sensitivity can be
approved using eq. (23).

Fig. 8 Schoeffler sensitivities for realizations in
Table 3.

As can be seen the best results are obtained for the
value of the shift parameter δ=δmin, i.e. circuit No. 1).
Monte Carlo runs, carried out for the same examples,
confirmed this result.

4 Conclusions

A procedure for the design of low-power second-order
allpole band-pass active-RC filters is presented. The
design is based on a low-pass to band-pass
transformation, which is applied to a first-order low-pass
filter prototype. The amplifier of the second-order band-

pass filter provides a low output impedance and supplies
positive feedback to the passive RC-network. It is shown
that a “lossy” LP-BP transformation transforms the
resistors of the low-pass prototype circuit into series
resistor-capacitor combinations, and capacitors into
parallel resistor-capacitor combinations, resulting in a
single-amplifier second-order band-pass filter circuit.
Detailed closed-form design equations for this circuit are
given. In summary, for the second-order allpole Class-4
[2, 5] band-pass filter, ideal impedance scaling with ρ=r
provides circuits with minimum sensitivity to the
component tolerances of the circuit.
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