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Abstract – A design method is presented for the design of all pole 
lowpass active-RC filters applying operational amplifiers.  The 
operational amplifier model used is the integrator model: ωt/s 
where ωt  is the unity gain frequency.  The design method is used 
for the design of a fifth order Butterworth filter applying just one 
operational amplifier coupled as a unity gain amplifier.  It is 
shown that the influence from the real operational amplifier may 
be reduced by trimming just one resistor in the circuit. The unity 
gain amplifiers have the advantage of providing low power 
consumption, yielding a large dynamic range, sometimes 
simplifying the amplifier design and being usable over a larger 
frequency range than conventional constant gain amplifiers.  The 
Schoeffler sensitivity index is used as a basis for a sensitivity 
comparison with other similar filters reported in the literature.  
 
 
 

I.  INTRODTION 
   Single–amplifier biquads are most often used for building 
higher order active filters by using the cascade technique.  In 
order to reduce the amount and complexity of the active 
circuitry required it will be an advantage to design higher 
order active filters by using only one operational amplifier. In 
this way it is possible to have low power consumption, low 
noise and what is shown in this article to have reasonable low 
sensitivities.  Unfortunately the analytical solution of the 
design equations for filters of higher order than two becomes 
very difficult if not unsolvable.  In this paper we will present a 
design technique for the solution of the design equations 
without the need of computing the transfer function 
coefficients analytically.  An analytical computation of the 
transfer function coefficient would have been necessary 
following the method described in [2] and [4].  The proposed 
method is general and may be used to design active filters 
applying real operational amplifiers.  Real operational 
amplifiers may be described by the input and output 
impedances as well as the unity gain frequency.  As the unity 
gain frequency is the key parameter of the integrator model of 
the operational amplifier we will in this paper neglect the 
influence of the input and output impedances. 
 

Similar attempts to design higher order active RC-filters with 
one operational amplifier are reported in [1] and [4].  In the 
approach described in [1] an increased amplifier gain has been 
used to reduce the parameter spreading but with an increased 
sensitivity as a result. Kramer in [4] has reported interesting 
results by numerically solving the design equations for third 
order filters with the constraints of minimizing the spread of 
component values. In both cases ideal operational amplifiers 
are used. 
 

II.   THE DESIGN METHOD 
Consider a transfer function H(s) of a linear filter: 
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B(s) is the numerator polynomial and A(s) is the denominator 
polynomial.  The transfer function H(s) which is called the 
target rational function is factored in the following form 
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with m zeros szk and n poles spj.  The real constant H0 is a scale 
factor. 
 
If we assume that all the zeros and poles of H(s) are simple 
then we can formulate the following scalar error function ε(x) 
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                                                                                           (3) 
where H(s) is the target rational function and H(x,s) is the 
realized rational function.  x is the vector of variable 
parameters e.g. resistors and capacitors of the circuit or unity 
gain frequencies of the operational amplifiers.  The last term 
which utilizes some additional points of the magnitude of H(s) 
at real frequencies ωi is used if a specified output level is 
wanted.  One point will normally be sufficient but more points 
may be incorporated if H(s) contains multiple poles and zeros.  
The evaluation of ε(x) could be done by any general purpose  
circuit simulation program.  This program should have the 
possibility of evaluating the network function H(x,s)  in the 
whole s-plane. 
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If the function ε(x) from equation (3) has been reduced to zero 
a match of the target function H(s) and the realized function 
H(x,s) has been obtained i.e. they have the same poles and 
zeros.  The evaluation of ε(x) requires only knowledge of the 
explicit form of H(s) in terms of poles and zeros as well as the 
structure and initial component values of the circuit to be 
designed. We don’t need the network function with the 
coefficients in analytical form.  This analytical form is 
required when setting up the design equations for active filters 
by following the procedure described in [2], [3] and [4]. 
 
Any optimization strategy may be useful in reducing the 
function ε(x) to zero, but it is recommended to use the damped 
least square algorithms due to Levenberg [8] and Marquardt 
[9].  This algorithm in a modified form has been described by 
Fletcher in [7]. Another very useful modification has been 
described by the author in [5].  This modification is a way of   
changing the damping constant from iteration to iteration 
allowing the algorithm to take diverging iterations when the 
normal equations of the linear least square problem tend to be 
ill-conditioned.  This modification has meant a considerable 
improvement of the overall convergence rate especially for 
difficult optimization problems.  
 
The whole analysis and optimization process is coded in 
FORTRAN.  In our approach the network equations are set up 
from a net list and solved for each of the poles and zeros 
appearing in the problem at hand. Net list is used in the same 
way by the SPICE program. This is a very flexible approach 
making it possible to change the structure and filter response 
without doing any additional coding.  A typical run with 50 
iterations takes less than 1sec on a personal computer. 
 

III.   A BUTTERWORTH FILTER 
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Figure 1: Fifth order unity gain all-pole filter 
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Figure 2: Operational Amplifier Model 

 
To illustrate the utility of the proposed design method we have 
used it to design a 5th order low-pass filter of the Butterworth 

type.  The structure is an extended Sallen-Key filter applying 
only one operational amplifier and is shown in Fig.1.  The 
operational amplifier is coupled as a unity gain amplifier since 
unity gain amplifiers have the advantage of providing low 
power consumption, yielding a large dynamic range, 
simplifying the amplifier design and being usable over a 
larger frequency range than more conventional constant gain 
amplifiers.  The conventional way of designing such a filter 
would be the cascade approach where the Butterworth transfer 
function is realized as a cascade connection of one first order 
section and two second order sections.  As the example will 
show the extended Sallen-Key structure offers some distinct 
advantage as compared with the cascade approach. 

 
 Ideal 

Op.Amp. 
Op.Amp. 

model 
Rel.Dev. 

in % 
R1 0.1551 0.1551    0  
C1 8.758 8.758    0 
R2 0.5366 0.5368  –0.04 
C2      2.356 2.352    0.26 
R3 1.374 1.374    0 
C3 0.8604 0.8604    0  
R4 6.298 6.293     0.08 
C4 8.758 8.758      0 
R5 0.8214 0.5174    58.8 
C5 0.01086 0.0111   –2.2 

Table 1 Circuit components with ideal operational amplifier 
and with operational amplifier model ω t =312.5 

 
Poles Real part Imaginary part 

    –1.000000 0.000000 
 –8.090170D–01 5.877844D–01 
 –3.090170D–01 9.510595D–01 
 –4.882626D+02 0.000000 

Table 2 Poles of the circuit response with operational 
amplifier model ω t =312.5 

 
The operational amplifier model is shown in figure 2 with the 
unity gain frequency 

Ct
1=ω  

As the most popular application of Butterworth lowpass filter 
is as anti aliasing filters for audio signals we have chosen in 
the normalized case to set ω t= 5MHz/16kHz = 312.5 which 
gives a  model capacitor with the value of  C = 1/ω t  = 3.2mF.  
This corresponds to apply the low cost operational amplifier 
LF156. 
 
We shall now show some results obtained by reducing the 
scalar error function ε(x) from equation (3) to zero. The 
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Figure 3   Circuit responses with ideal operational amplifier 

and with operational amplifier model 
 
optimization process has been started with an initial guess 
where all the passive component values are set to 1.0.  
 
In Table 1 we have shown the result with the constraint of 
minimizing the spread of component values both by applying 
an ideal operational amplifier and by applying an operational 
amplifier described by the integrator model with a unity gain 
frequency of ω t =312.5  The corresponding poles are shown 
in table 2.  We observe a non dominant pole situated far 
outside the pass band of the Butterworth filter.  This non 
dominant pole is caused by the unity gain frequency of the 
operational amplifier.  The unity gain frequency also makes a 
shift of the dominant poles but this shift is compensated by a 
change of     
the resistors R2, R4, R5 and the capacitors C2, C5.  This can be 
seen from the 4th column of table 1 where we have shown the 
relative deviation of the component values compared with the 
ideal design.  In fact by using the nominal component values 
from the ideal filter the influence of the unity gain frequency 
may be almost outperformed just by trimming the value of 
resistor R5. 
 

IV. SENSITIVITY ANALYSIS 
Manufactured filters cannot guarantee to correspond exactly to 
the designed filter performances.  The effect of component 
tolerances should be analyzed.  The simplest way of 
predicting the effect of component tolerances is to use the 
concept of network sensitivity assuming that the component 
changes are small.  The magnitude variability with respect to 
the passive components and the unity gain frequency ωt is 
given by 
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Figure 4     Passive and active sensitivity index by applying 

the operational amplifier model ω t =312.5 
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resistors.  H
t

Sω  is the relative sensitivity with respect to the  
unity gain frequency.  Now we approximate the upper limit of 
the variability by the following sum 
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We have chosen to subdivide the Schoeffler criterion in two 
parts a passive part with contribution only from the passive 
components  
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and an active part with contribution only from the unity gain 
frequency of the operational amplifier  
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We have chosen this way of subdividing the Schoeffler 
criterion as we may expect a much larger tolerance on the 
unity gain frequency of the operational amplifier compared 
with the tolerance of the passive components.  But we can 
decrease the relative sensitivity H

t
Sω  by choosing an 

operational amplifier with a higher unity gain frequency. 
 
A sensitivity analysis was performed assuming the relative 
changes of the resistors, capacitors and the unity gain 
frequency to be uncorrelated random variables with a zero 
mean Gaussian distribution and 1% standard deviation.  The 
Schoeffler sensitivity index which is an estimate of the upper 
limit of the gain variability in % is shown on figure 4.   
 
To obtain an analytical expression of the Schoeffler sensitivity 
index of the 5th order Butterworth filter in terms of the 
component parameters is a complicated task.  In the limit 
when the Laplace variable s→∞ we may in the all-pole filter 
case find the following transfer function (The Butterworth 
filter is a special case of the all-pole filter) 
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This corresponds to a gain slope of 100dB/decade.  The 
passive sensitivity index of the gain function approaches 
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This means that the passive Schoeffler sensitivity index 
approaches %16.3%10 = with 1% standard deviation on 
each of the passive component.  This is also the limiting value 
of the sensitivity index shown on fig. 4 when ω→∞.  The 
overall sensitivity index is below 3.16 for 0≤ω≤∞.  We will 
not claim that this is a minimum value but we regard this as a 
quite satisfactory result.  
 
This sensitivity index is lower than the sensitivity index 
reported in [1].  The only difference is due to the fact that we 
have chosen a unity gain amplifier and have minimized the 
component spread.  But as can be seen from table 1 the 
component spread is quite high with a value of 790.  This 
value is too large for integrated circuit design but acceptable 
for the design of a discrete circuit.  
 

By applying the same method as described above on a unity 
gain 4th   and 3rd order Butterworth filter we have found a 
component spread  of  44 and 7.3 with similar acceptable 
passive and active sensitivities.  In another paper we will 
describe how the overall component spread may be reduced 
by introducing less feedback to the operational amplifier.  The 
drawback in this case is an increased passive sensitivity.  
 

V.  CONCLUSION 
A numerical design method has been presented for the design 
of an all-pole Butterworth filter of order 5 applying just one 
operational amplifier.  The operational amplifier is described 
by the integrator model.  We have shown that it is possible to 
reduce the influence of the operational amplifier just by 
trimming one of the resistors in the structure. By reducing the 
component spread we have found that the Schoeffler 
sensitivity index takes the maximum value at the slope of the 
Butterworth characteristic.  This is a highly desirable result for 
a practical realization of the filter.  The disadvantage is the 
component spread which makes this filter impractical for 
integrated circuit application but well suited for a discrete 
realization.  By applying the same design method in the 4th 
and 3rd order all-pole Butterworth case the component spread 
is more acceptable for integrated circuit design. 
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